
Racing for TLS Certificate Validation:
A Hijacker’s Guide to the Android TLS Galaxy

Sajjad Pourali†1, Xiufen Yu†1, Lianying Zhao2, Mohammad Mannan1, and Amr Youssef1

1Concordia University, Montreal, Canada
2Carleton University, Ottawa, Canada

Abstract

Besides developers’ code, current Android apps usually
integrate code from third-party libraries, all of which may
include code for TLS validation. We analyze well-known im-
proper TLS certificate validation issues in popular Android
apps, and attribute the validation issues to the offending code/-
party in a fine-grained manner, unlike existing work labeling
an entire app for validation failures. Surprisingly, we discov-
ered a widely used practice of overriding the global default
validation functions with improper validation logic, or sim-
ply performing no validation at all, affecting the entire app’s
TLS connections, which we call validation hijacking. We
design and implement an automated dynamic analysis tool
called Marvin to identify TLS validation failures, including
validation hijacking, and the responsible parties behind such
insecure practices. Among 7826 apps from a Chinese app
store and Google Play analyzed by Marvin, we found many
occurrences of insecure TLS certificate validation instances
(55.3% of the Chinese apps and 6.4% of the Google Play
apps). Validation hijacking happens in 34.3% of the inse-
cure apps from the Chinese app store and 21.1% of insecure
Google Play apps. A network attacker can exploit these in-
secure connections in various ways, e.g., to compromise PII,
app login and SSO credentials, to launch phishing and other
content modification attacks, including code injection. We
observed that most of these vulnerabilities are related to third-
party libraries used by the apps, not the app code created by
app developers. The technical root cause enabling validation
hijacking appears to be the specific modifications made by
Google in the OkHttp library integrated with the Android OS,
which is used by many developers by default, without being
aware of its potential risks. Overall, our findings provide valu-
able insights into the responsible parties for TLS validation
issues in Android, including the validation hijacking problem.

† Equal contribution.

1 Introduction

According to GlobalStat [47], Android smartphones have
exceeded 72% of the smartphone market share in 2023, indi-
cating the increasing importance of Android security. Despite
the success and prevalence of TLS for app security, its use is
marked with many security issues (see e.g., [29, 35, 36, 50]).
Existing studies are exemplified by Wang et al. [50, 51] iden-
tifying vulnerable TLS implementations with code snippets;
and Oltrogge et al. [35] demonstrating that Google’s Network
Security Configuration (NSC) and Google Play Safeguards
failed to detect vulnerable TLS implementations.

Among the various ways TLS can go wrong, we focus
on the validation of the TLS certificate, which is the founda-
tion of establishing secure communication. Existing research
largely considers validation issues per-app, even though vali-
dation functions from several entities, including the app de-
veloper and authors of various libraries (e.g., ads, analytics)
used in a given app, may be involved in an app’s TLS con-
nections. Beyond finding the responsible parties behind TLS
validation problems, perhaps more importantly, existing work
also does not explore how or whether these parties can affect
each other’s validation effort without the other parties’ knowl-
edge. Note that stealthy data collection by third-parties is a
well-studied problem in the literature (e.g., [24,26,42,44,49]).

In this paper, we detail the design and implementation of
an analysis tool called Marvin1 to attribute TLS certificate
validation problems to more specific parties, e.g., the app
developer or various libraries included in the app, i.e., not
just the app as a whole. When validation mistakes happen
in a library affecting other entities in the app (e.g., the app
developer and other libraries), the impact can be significantly
higher (compared to an app developer’s faulty TLS validator)
as a library may be used by a large number of apps. Using
Marvin, we systematically analyze insecure TLS connections
in Android apps resulted from improper certificate validation

1Marvin is the paranoid but super-intelligent Android in The Hitchhiker’s
Guide to the Galaxy series: https://en.wikipedia.org/wiki/Marvin_
the_Paranoid_Android.

by: 1) exercising the states of the apps with UI interaction
to maximize the coverage of connections; 2) tracing real-
time code execution for TLS validation-related functions; and
3) capturing corresponding network traffic with a man-in-
the-middle proxy (mitmproxy [15]). We use certificates with
common and well-documented validation issues in our proxy,
so that the statistics from the measurements and the attribution
results are self-evident and built on verified grounds.

For each established connection through the proxy, i.e.,
when the invalid certificate is accepted by the app, Marvin
extracts various metadata for attribution purposes, e.g., desti-
nation address, app name, functions involved in the validation.
Our fine-grained attribution process led us to discover a highly
insecure practice we term as validation hijacking: the app’s
or an included library’s code globally setting default insecure
TLS validation functions, resulting in a significant number of
certificates being validated by the set function (simply bypass-
ing the validation in many cases), unbeknownst to the code
initiating the connections (after such global modifications),
e.g., the app developer’s code or a third-party library’s code.

We use Marvin to analyze a set of representative apps (in
terms of user base) collected from Google Play and 360 Mo-
bile Assistant (Qihoo 360, a popular Chinese app store [18],
which allows automated app download). Marvin identifies
many instances of validation issues, a majority of which are
in Chinese apps due to their inclusion of a few very popular
but problematic SDKs, e.g., Tencent Bugly [17]. We traced
back the root cause of validation hijacking to specific mod-
ifications that honor the improper override (introduced by
Google) to the OkHttp library included in the Android OS,
although other HTTP libraries can also cause similar issues.

Our seemingly straightforward approach is faced with sev-
eral challenges. For instance, numerous apps (especially those
from the Chinese app store) are protected with strong state-of-
the-art commercial packers, mainly against dynamic analysis
as well as code obfuscation, rendering execution tracing very
difficult. Furthermore, our attribution process requires trac-
ing Java interfaces, which cannot be directly hooked; instead,
their implementations need to be hooked, necessitating an
exploration of the entire code loaded into memory to identify
their implementation and utilize Java reflection to match them
with their definitions for the hooking process. Some apps also
do not adhere to the system proxy settings, and network traffic
encompasses a mix of connections originating from the entire
Android platform, system apps, and the target app, making it
difficult to capture and filter traffic from the target app only.

We partially address such challenges so as to be able to
conduct our analysis, and ensure that our findings are correct
and the reported numbers are a lower bound (i.e., we may
have false negatives, but no false positives). For example, we
make use of eBPF [9], a kernel-level restricted but privileged
execution environment, to avoid being detected, to separate a
target app’s network traffic, and to redirect connections not
respecting the system proxy setting.

Contributions and notable findings.
1. We design and implement Marvin, an automated tool

to perform a large-scale automated analysis of common
TLS certificate validation issues, and to identify the re-
sponsible code/party for such validation failures, includ-
ing a novel but very damaging case we call validation
hijacking. We will open source Marvin.

2. We report on the prevalence of TLS validation failures
across 7826 Android apps from two different app stores,
consisting of 2765 Chinese ecosystem apps and 5061
Google Play apps—all automatically analyzed by Mar-
vin. We identified that 55.3% of the apps in the Chinese
app store and 6.4% of the Google Play apps have at
least one connection with its TLS certificate not properly
validated, which can lead to MITM attacks.

3. We conduct a fine-grained attribution, which, for the first
time, attributes the TLS certificate validation failures to
either an app’s code, or the code of one of the multiple
libraries an app uses. Such attribution should make a sig-
nificant difference in remediation (vs. simply criticizing
insecure developer practices). No past studies identified
the truly responsible party behind such failures—i.e., the
entity performing faulty validation, which indeed can be
different than the originator of the TLS connection.

4. We draw attention to a pervasive but never discussed
phenomenon, TLS certificate validation hijacking, es-
pecially, given many instances of such hijacking as de-
tected by Marvin: 524/1529 (34.3%) of the Chinese apps,
and 68/322 (21.1%) of the Google Play apps with TLS
validation issues suffer from validation hijacking.

5. We identify the high-profile libraries which perform vali-
dation hijacking by overriding setDefaultSSLSocket-
Factory() or setDefaultHostnameVerifier(), e.g.,
Tencent Bugly, Baidu Location SDK, and Bytedance
SDK. However, as we uncover, such hijacking is ulti-
mately enabled by Google’s modifications to the OkHttp
library (the default Android HTTP client).

6. We show concrete issues resulting from the identified
TLS validation issues, both in terms of information dis-
closure and content modification attacks by an on-path
network adversary. We found that 88.8% of the Chinese
apps and 37.6% of the Google Play apps with TLS val-
idation issues use insecure TLS channels to transmit
sensitive information. Our case studies with selected
apps highlight the severity of the identified risks (tested
on our own accounts): user credentials including one-
time passwords and SSO login credentials (e.g., Google,
Facebook, Twitter) compromise allows account takeover,
in-app phishing, and even remote code execution.

We will open-source our tool on: https://github.com/
Madiba-Research/Marvin.

Disclosure. In the process of disclosing our findings, we
reached out to Google and the libraries that hijack the TLS
verifiers, including Bugly. We also contacted all the develop-
ers of the vulnerable apps mentioned in this work. For Google
and Bugly, we contacted them via their bug hunters’ platform,
as well as through email communication for remaining cases,
except for com.newsweekly.livepi, where we utilized their
in-app contact form due to the absence of an email address.
Developer email addresses for Google Play apps were directly
obtained from the Google Play Store. However, for Chinese
apps, as contact information on the 360 Mobile Assistant web-
site was unavailable, we relied on various sources, including
the apps themselves, their respective websites, and develop-
ment websites, to acquire email addresses. Throughout our
communication with all involved parties, we meticulously out-
lined the identified vulnerability, its associated risks, and pro-
vided detailed information on potential remediation methods.
Additionally, we offered app developers a fallback method-
ology to partially rectify their code if removing the insecure
library proved challenging. Google acknowledged the issue
after multiple interactions, stating they cannot address it “with-
out introducing app compatibility risks”. They also mentioned
exploring the possibility of introducing warnings or errors to
Android Studio when this behavior is observed, along with
other mitigation methods. On the other hand, Bugly refused to
accept our finding as an issue for their library. The remaining
vendors did not respond to us (as of Feb. 21, 2024).

2 Related Work

In this section, we summarize related work from the literature,
and discuss the unique aspects of our work.
TLS security analysis of mobile apps. In general, TLS
problems identified in apps may involve two cases: defects
in a given implementation such as the use of weak cipher
suites [40], and improper use/choice/configuration of TLS li-
braries [51]. Fahl et al. [30] performed the first in-depth study
of the widespread SSL problems through studying code snip-
pets and advice in developer forums, and interviewing app
developers. They revealed that customized SSL functions as
used by developers, and their partial understanding of SSL are
the two main reasons for weakening SSL security. Georgiev
et al. [31] demonstrated that SSL certificate validation is com-
pletely broken in many security-critical apps and libraries,
such as Amazon’s EC2 Java library and Google AdMob, and
attributed these vulnerabilities to badly designed APIs of
SSL implementations, e.g., JSSE, OpenSSL and GnuTLS.
Oltrogge et al. [35] discovered that Google Play failed to de-
tect vulnerable TLS implementations in their investigation of
the effectiveness of Google’s Network Security Configuration
(NSC) and Google Play Safeguards. Possemato et al. [36]
performed an extensive study on Google network defense
mechanisms and found that network security policy in apps
can downgrade security by allowing cleartext protocols or

by trusting the union of CAs from both System and User
KeyStore. Additionally, they noticed that several popular ad
libraries require apps to weaken their security policy.

Wang et al. [50,51] employed both static and dynamic anal-
ysis techniques to identify the vulnerable implementations
of TLS in Android apps. Their tool, DCDroid [50], uncov-
ered four types of vulnerable implementations of TLS (i.e.,
X509TrustManager, HostNameVerifier, WebViewClient,
X509HostnameVerifier). However, it could only detect sim-
ple vulnerable TLS implementations (e.g., by implementing
the standard Java interface with a few or even a single instruc-
tion), and may fail to identify complex ones. In practice, TLS
functions can be improperly implemented in various ways,
which does not affect our methodology. DCDroid also found
some apps to be vulnerable because they invoked vulnerable
third-party SDKs; however, the entity that was validating the
certificate was not identified. Applicable to all the aforemen-
tioned studies, no fine-grained attribution was conducted (e.g.,
identifying the responsible parties for validation failures, and
validation hijacking between parties).
System proxy and dynamic analysis evasion. Most existing
dynamic analysis studies do not consider proxy evasion by
Android apps (e.g., [33, 41, 44, 51]), which may have affected
the reported results, i.e., missing connections from such apps.
However, two studies [25, 37] addressed this issue by using
API hooking. Nevertheless, this approach is also not fully
reliable as many apps are becoming aware of dynamic binary
instrumentation (DBI). In contrast, the use of eBPF in Marvin
at the kernel level is impossible for the apps to detect without
root access. With regard to dynamic analysis evasion/detec-
tion, NCScope [56], a hardware-assisted tool to scrutinize
native code of potentially packed apps, leveraged ETM (a
hardware feature of ARM processors) and eBPF to collect
real execution traces and relevant memory data of apps. How-
ever, NCScope can only detect the presence of self-protection
and anti-analysis mechanisms but not evade them (i.e., the
app still crashes).
Third-party code identification. Pradeep et al. [38] con-
ducted a comparative analysis of certificate pinning with an
exclusive focus on third-party components in apps. To differ-
entiate between first-party and third-party code, they set the
following threshold: if a code path was found in more than five
apps, it was categorized as a third-party source. Muslukhov et
al. [32] attributed whether a package name corresponds to an
app, a library, or a possible library, by searching an exhaustive
list of package names for libraries and potential libraries; such
lists of course become stale with time.
Sensitive data leakage. Wang et al. [49] uncovered a new
attack vector: malicious libraries strategically target other
vendors’ SDKs integrated in the same host app to harvest
private user data. They found 42 distinct libraries stealthily
harvesting data from 16 popular SDKs, affecting over 19K
apps. Nguyen et al. [33] performed a large-scale measure-
ment of 86,163 Android apps to understand the current state

of GDPR’s explicit consent violation. They found that 24,838
apps share personal data without the user’s explicit consent.
Pourali et al. [37] implemented ThirdEye to detect privacy
issues via non-standard and covert channels. They identi-
fied that 2887/12,598 (22.92%) apps used custom encryption
(where data is encrypted by an app before being sent over the
TLS channel) for network transmission and storing private
content in shared device storage. Reardon et al. [42] found that
Jiguang’s SDK (a Chinese SDK) evasively monitors user’s
activities and collects user information, e.g., GPS location,
identifiers (e.g., device serial, IMEI), and the names of the
installed apps. Although we identified several highly popular
libraries involved in TLS validation hijacking, we are unsure
about their motives, or whether they are even aware of it.
Novelty. Compared to previous work, we have achieved fine-
grained detection and attribution of TLS certificate validation
issues. Notably, no past work attributed to the truly responsi-
ble party behind a TLS validation failure—i.e., no distinction
was between the connection originators and faulty validators,
which as we found can be different. More critically, we bring
attention to and measure the prevalence of what we call cer-
tificate validation hijacking—a completely new phenomenon,
unidentified by any past work. Accordingly, our fine-grained
attribution cases with their measurements demonstrate the
chaos of TLS certificate validation practices between multiple
parties in the Android development cycle. We also leverage
kernel-level instrumentation to handle DBI-aware apps, to
maximize analysis coverage, which can help future dynamic
analysis frameworks.

3 High-level System Design

In this section, we provide an overview of our design behind
Marvin. The primary goal of Marvin is to analyze TLS cer-
tificate validation issues in Android apps, and attribute such
issues to responsible part of an app (e.g., the app developer’s
code or a specific library included in the app). Specifically,
we aim to examine TLS certificate validation issues in four
different cases based on hosts. Hereafter, we refer to TLS con-
nections to unique destination addresses with one or more of
the four validation issues (see below) as insecure connections.
We investigate the root cause of a validation failure or hijack,
and attribute it to either the app or one of its libraries.
Selected TLS certificate validation issues. We consider the
following four cases adapted from badssl.com to cover the
most obvious checks for our analysis. Additional tests can
be easily added to Marvin albeit at the expense of increased
time requirement for analyzing each app. (1) Unverified Cer-
tificate Signature. The app accepts any received certificate
without performing any signature validation, although it may
still check the expiry date and domain name. (2) Self-signed
Certificate. The app performs signature validation on the
received certificate using the public key contained in the cer-
tificate itself. Nonetheless, it may still verify the expiry date

and domain name. (3) Expired Certificate. The app performs
secure domain and signature validation on the received certifi-
cate, but it disregards the validity time of the certificate. (4)
Domain Mismatch. The app securely checks the expiry date
and performs signature validation on the received certificate,
but it skips matching the certificate domain and server names.
Threat model. We assume a network-based attacker, posi-
tioned anywhere between a faulty app (i.e., an app with a
TLS validation error) and the server(s) it connects to, in line
with the Dolev-Yao [27] threat model, i.e., the attacker can
read/manipulate the network traffic. The attacker also needs
to identify faulty apps before launching the attack, e.g., via
simple TLS validation tests (being able to use mitmproxy
could be enough). This attack can result in a wide range of
consequences, including but not limited to session hijack-
ing, credential/PII theft, phishing attacks, and malware/code
injection. We assume no other capabilities for the attacker.

3.1 Attribution of Validation Issues

When certificate validation is not performed properly for a
specific TLS connection, we would like to pinpoint where
the issue likely stemmed from, unlike in previous studies
(e.g., [46, 50]) where the issue was merely identified to have
occurred in a monolithic app.

The common practice in Android app development in-
volves incorporating third-party libraries (DEX/native) in
developers’ own code, producing a single app package, con-
taining code from multiple parties. For instance, the “Fitdays”
(cn.fitdays.fitdays) app with 1M+ downloads contains
com.tencent.bugly.proguard (third-party code) package
in its code, which improperly handles TLS certificate valida-
tion. In contrast, the “Playit” (com.playit.videoplayer)
app, with 100M+ downloads, improperly modifies the default
TLS verifiers, affecting TLS certificate validation in various
third-party code, including Facebook, Unity3d, and AppLovin
SDKs. It is important to note that the presence of a certifi-
cate validation issue may or may not be under the control
of the app/library developer, depending on the specific code
segment responsible for the issue. This distinction is crucial
in determining the appropriate remedial actions.
Determination of third-parties. To the best of our knowl-
edge, there exists no universal, accurate and automated way
to partition an app based on vendors (e.g., not scalable if
based on an exhaustive list [32, 45]). Therefore, we follow
Pradeep et al. [38] (in their case for certificate paths), to con-
sider any package name appearing in more than 5 apps as a
third-party library, as opposed to code written by the app de-
veloper. Although a library can consist of multiple packages,
which may or may not have common package names, using
packages as an approximation for libraries is still valid since
multiple packages can be seen as a way of modularizing a li-
brary. Additionally, if vendor information becomes available,
package-level attribution can be aggregated to the vendor

level. Likewise, we apply the same threshold for determining
third-party domain names, i.e., if a domain is contacted by
over 5 apps, we consider it to be a third-party domain name,
as opposed to the app’s domain.
Validation overrides and hijacking. Some Android app
developers may override the standard Java interface (e.g.,
from classes HostnameVerifier and X509TrustManager)
with custom code, e.g., to make use of certain TLS fea-
tures (cf. [50, 51]). However, this customization may lead
to one or multiple of the aforementioned improper valida-
tion cases. From our observation, TLS certificate valida-
tion is composed of: a hostname verifier to check for Do-
main Mismatch, and the rest of the validation often in the
form of callbacks in the trust manager (including checks
for the other three cases above). Correspondingly, this is re-
flected in the overrides, HostnameVerifier.verify() and
X509TrustManager.checkServerTrusted().

Aside from the aforementioned regular overrides, we ob-
serve that the validation override can be done in a way that
globally affects all subsequent TLS certificate validations
in the HTTPS protocol if they use the HttpsURLConnec-
tion class with default values for socket factory and host-
name verifier; alarmingly, this phenomenon is prevalent (as
observed in our results). Technically, Android provides two
static public methods, namely setDefaultSSLSocketFac-
tory() and setDefaultHostnameVerifier() to override
the default TLS validation environment globally, stored stati-
cally in HttpsURLConnection, without any concurrency con-
trol. While these functions are well-documented and their use
is not new, third-party libraries performing such global over-
rides can have severe security implications (e.g., bypassing
certificate validation unbeknownst to the app developer). We
note that this might be either intentional or just inadvertent.

1 private static HttpsURLConnection a(URL url, int i) throws NoSuchAlgorithmException,
2 KeyManagementExceiption, IOException {
3 SSLContext sSLContext = SSLContext.getInstance("TLS");
4 sSLContext.init(null, new TrustedManager[]{new b()}, new SecureRandom());
5 HttpsURLConnection.setDefaultSocketFactory(sSLContext.getSocketFactory());}
6 HttpsURLConnection.setDefaultHostnameVerifier(new a());
7 HttpsURLConnection httpsURLConnection = (HttpsURLConnection) url.openConnection();
8 return httpsURLConnection;
9 }

Listing 1: Global TLS certificate validation override in
Tencent Bugly (a widely used library)

We define TLS certificate validation hijacking as when
either an app or a library attempts to validate its certificate by
invoking standard libraries or its own implementation, but the
validation code is overridden by another party, which does not
perform any validation checks, or lacks any required checks
as defined in RFC 5280 [43]. Consequently, the certificate
validation is ultimately carried out by the other party rather
than the app or the library’s code. Listing 1 shows an example
where Tencent Bugly [17] (a popular Chinese library for ex-
ception reporting) performs global overrides in its ProGuard
helper SDK (which is different from the Android’s ProGuard
optimizer and obfuscator); this causes certificate validation of
the entire app, including other libraries, to be through Bugly’s

code, which turned out to be insecure as we found.

App Connection
Validated by App Code

Lib Connection
Validated by App Code

(Hijacking)

TLS Valildator

TLS Initiator
Connection Initiated

by App Code
Connection Initiated

by Lib Code

Certificate Validated
by App Code

Certificate Validated
by Lib Code

Certificate Validated
by a different Lib

App Connection
Validated by Lib Code

(Hijacking)

Lib Connection
Validated by Lib Code

Lib Connection Validated
by the code of a different

Lib (Hijacking)

Figure 1: Overview of our attribution cases (except the racing
hijacking case involving multiple parties)

Attribution cases. Based on the aforementioned observations,
we consider our fine-grained attribution of the validation is-
sues in six cases as follows; see also Fig. 1. Note that we
consider (and have confirmed from the results) that the stan-
dard validation code is properly implemented and hence not
reflected in the attribution (as no issues occurred).

1) App connection validated by app code. This refers to
when the app developer uses custom code or overrides stan-
dard code to validate the certificate for connections initiated
by the app developer, but does so improperly. Although in-
secure, the impact of this practice is limited to an app devel-
oper’s connections alone, in a given app.

2) Library connection validated by library code. Similarly,
a library included in the app can also perform certificate
validation of connections initiated by itself, through either
custom code or overrides. The impact of this case is also
limited to an individual library, but considering a library is
potentially used by many apps, the connections from that
library will be vulnerable in all apps using the library.

3) App connection validated by library code (hijacking).
Due to validation hijacking, once a library calls one or both of
the set default functions, all Java-based HTTPS connections
that utilize the default verifier within a given app will be
validated by the override functions of this library, which the
app developer may be unaware of. In this case, the victim
connections are initiated by the app developer.

4) Library connection validated by app code (hijacking).
Likewise, when the code calling the set default functions is
written by the app developer, the victim connections can also
be initiated by a library included in the app, which may not
be anticipated by the library developer.

5) Library connection validated by the code of a different
library (hijacking). In this case, both the victim connection
and the code causing the global override are from libraries in-
cluded by the app, but different libraries (e.g., Tencent improp-
erly validating a connection’s certificate initiated by Google).

6) Race condition with multiple callers (hijacking). The
global override functions may also be called by multiple par-
ties in the same app. As each call to set the default functions
will affect certificate validation for all Java-based HTTPS con-
nections that utilize the default verifiers, it will always be the
last call that takes effect. As the consequence is determined
by timing, aside from showing the presence of this issue, we

do not measure the timings to find out who wins (which can
vary across different runs).

3.2 Technical Challenges, Solutions, Overview

We highlight several unique technical challenges faced in the
attempt to achieve our analysis objectives and our solutions.
Traffic separation/redirection. As our analysis target is a
specific app, we must separate its traffic from that of other
apps on the operating system. By default, each network con-
nection does not necessarily have any identifier specific to
an app. Moreover, we encounter a challenge where certain
apps (almost 70% of apps from the Chinese store) disregard
the proxy configuration set in the device settings for some of
their connections. Instead, they establish direct connections
to their intended destinations, bypassing the designated proxy
server. To address these issues, we need a mechanism capable
of identifying such connections, linking them to their originat-
ing apps, and redirecting them to our proxy server. In contrast
to other approaches that either overlooked [33, 44] this issue
or relied on VPNs [41, 51] or API hooking [25, 37], we lever-
age eBPF [9], which operates at the kernel level (requiring no
changes to the kernel and remaining undetectable by apps),
to intercept system events. Specifically, we utilize eBPF to
hook into the Linux kernel’s cgroup feature, enabling us to at-
tach our instrumentation to specific resource allocation events
within the OS. For network connections, we use the programs
connect4 (for IPv4) and connect6 (for IPv6), corresponding
to TCP socket creation in the Linux kernel.

To achieve traffic separation, considering that each Android
app is assigned a unique user ID, we can trace the origin of
each socket by logging the user IDs associated with their
creation through the cgroup feature. We opt for user IDs over
process IDs due to the possibility of an app having multiple
dynamically generated process IDs.

For traffic redirection, we employ eBPF to create a hook
in the cgroup feature, intercepting, logging, and modifying
socket destinations during resource allocation, especially for
HTTP/S ports. This interception occurs if the destination
address does not match that of our proxy server. By lever-
aging the user ID of the app, this approach allows us to se-
lectively forward app traffic in a granular manner. Although
this methodology requires root access, alternative methods
are not sufficient for our task. For instance, iptables which
also requires root access, does not support the log feature in
Android, which is used to enumerate the connections. VPNs
do not require root access but can be easily detected [20], and
traffic capturing from the WiFi access points does not allow
us to perform traffic separation.
Dynamic analysis evasion. We also observe that a significant
number of apps employ robust evasion techniques to counter
dynamic analysis, particularly function hooking. This means
the app being analyzed will crash (among other misbehav-
ior) once hooking is detected, thus prematurely terminating

our analysis. This behavior is known as dynamic binary in-
strumentation (DBI) detection. There have been a number of
studies on “Android packers” [23, 28, 56], with academically
proposed “unpackers” [53–55], most of which tend to be no
longer up-to-date (packing and unpacking are like an arms
race). Note that packers can usually detect rooting, emulation,
debugging, and function hooking with a highly obfuscated na-
tive library (.so). We find a significant portion of the packed
apps making use of very strong commercial Android packers,
for which we are not aware of any unpackers (academic or
commercial), to the best of our knowledge; example packers
include Ijiami [11], Bangcle [6], Netease [16], 360 [2], and
Ali [3], among many others. For instance, the Ijiami packer
employs direct syscalls (the assembly instruction) to examine
the app’s memory maps for any signs of tampering by off-
set calculation. Hence, app-specific tweaks are necessary to
avoid detection (which is manual and not scalable). To max-
imize our analysis coverage, we discuss how we deal with
DBI detection (included in most packers) in Section 4.2.
Overview of Marvin. In brief, we run the target app by in-
teracting with its UI in an automated manner to trigger as
many connections as possible, and meanwhile intercept its
traffic with mitmproxy [15] (Sec. 4.2 under “TLS Intercep-
tion”) with invalid certificates. We prepare certificates corre-
sponding to the aforementioned 4 validation issues (Sec. 3)
for the proxy, and thus any connections ending up in the in-
tercepted traffic (meaning problematic certificates accepted)
will match with the improper validation in the app’s code.
In parallel, we employ dynamic analysis via eBPF for traffic
separation/redirection (Sec. 3.2 under “Traffic separation/redi-
rection”) and Frida hooking [34] to record the stack traces
of a pre-determined set of functions in the apps to serve two
purposes: i) to aid in the attribution analysis of the certificate
validation issues; and ii) to gain a better understanding of what
is sent in the HTTPS (including custom-encrypted) traffic. We
further explain the implementation details in Sec. 4.

4 Implementation of Marvin

Our analysis with Marvin is conducted in two phases: 1) ex-
ecution and data collection; 2) analysis and attribution; see
Figure 2 for an overview. We utilize Python and JavaScript
to implement the detection of TLS certificate validation vul-
nerabilities and fine-grained attribution (approx. 3.3K LOC).
We used Python script to create TLS passthrough and cer-
tificate exchange features, which were seamlessly integrated
into mitmproxy as addons. This allowed us to intercept and
store only insecure TLS connections. For traffic separation
and redirection, we leveraged eBPF programs as explained
in Sec. 3.2, developed in C. For the dynamic analysis, i.e.,
hooking network and certificate validation functions, we used
Frida for which hooks were written in JavaScript. Moreover,
we made modifications to ThirdEye [37] to manage the or-
chestration of app executions and detect custom encryption

Phone

Parse Insecure TLS Connections

TLS Intercept
Hook Certificate VerificationHook Encryption

Redirect & Separate TrafficUI Interaction

Remote Servers

Mitmproxy

Determine Attribution Type

Identify TLS Connection
Initiator & Validator

Determine HijackingAttribution

Identify Information Leaks

Identify Insecure Encryption

Determine Third-parties

Measure Insecure TLS & Consequences

Insecure TLS Connections
Secure TLS Connections

TLS PassthroughOriginal Certificate

Data, Stacktrace, Logs

TLS InterceptionExecution and Data Collection

Fine-grained Attribution

Replaced Certificate

Figure 2: Components and workflow of Marvin

channels. Finally, we developed Python scripts to perform our
analysis over the collected data.

4.1 Preparing the Analysis Environment

We first explain several considerations for preparing the envi-
ronment and one-time actions before detailing the execution,
data collection, and data analysis phases.

Root detection evasion. As mentioned in Sec. 3.2, the state-
of-the-art commercial packers also provide features to detect
and evade dynamic analysis. However, among these features,
we must address root detection, as our method requires root
permissions to set up the dynamic analysis tools, such as eBPF
and Frida. To obtain root access, we utilized Magisk [14], and
configured it to run as part of the Zygote process (a system-
level process in Android that serves as a parent process for
all app processes). Marvin scans the AndroidManifest.xml
file of each installed app to automatically extract their pack-
age names and services, which are then added to the Magisk
denylist. This denylist prevents apps and services from ac-
cessing the Zygote process and any associated root privileges,
which reduces the chance of root detection.

Attaching and adapting eBPF programs. We utilized the
bpftool tool within the eadb [8] environment (a Debian-based
shell environment to run BCC, bpftrace, and bpftool on An-
droid) to attach our eBPF programs to the kernel. However,
eadb lacked native support for cgroup that we used, prompt-
ing us to enhance it by adding functionality for cgroup-based
eBPF programs. Subsequently, we packaged our programs
into a Magisk service module, enabling automatic execution
after device boot, which allowed Marvin to maintain the con-
tinuous operation of our eBPF programs on the devices, facil-
itating the separation and redirection of app network traffic.

4.2 Execution and Data Collection

In this phase, Marvin automatically installs and executes the
selected apps on configured Android devices, and then runs a
mitmproxy for each of four types of invalid certificates. At this
point, the eBPF programs are already running (as discussed
above), and certain functions of the target apps (mainly for
attribution) are hooked using Frida (with Javascript code).
Finally, Marvin starts the user interaction simulator on the
phone to explore the apps and trigger network connections.
We discuss individual aspects of this phase below.
UI interaction. To maximize execution path coverage to trig-
ger network connections, Marvin needs to simulate a user’s in-
teraction with the app’s UI, e.g., tapping and entering text. To
this end, we utilized the ThirdEye UI interaction module and
improved its interaction speed by adjusting the timing param-
eters, and updating its duplicate element detection approach,
wherein each UI item is interacted with twice to induce the
app to create connections again in case the certificate vali-
dation was correct (hence connection aborted), as explained
below under “Inducing apps to re-establish connection”.
TLS interception. The key to our analysis of certificate vali-
dation issues is the ability to intercept the TLS traffic, replace
the certificates, and observe how the app reacts. Therefore,
Marvin launches mitmproxy and replaces the server’s cer-
tificate with four types of misconfigured certificates corre-
sponding to the four types of validation issues, for each server
contacted by the app. If the proxy server receives a TLS error
about validation failures (which is expected from the app),
Marvin adds the server’s SNI and IP address to a whitelist,
and the proxy works as an SNI server without replacing the
certificate. If the certificate is accepted without errors, Marvin
flags it as improper validation (hence an insecure connection).

Certificate generation and replacement. Marvin generates
the four types of misconfigured certificates as discussed in
Sec. 3 per connection on-the-fly using the OpenSSL library,
except for the case of testing domain mismatch. This approach
avoids the mixing of results from across different validation

issue types. For instance, if a self-signed certificate contains
incorrect Subject Alternative Names (SANs), it is difficult
to distinguish if the rejection is due to domain mismatch or
the use of a self-signed certificate. Marvin only imports our
trusted root certificate on the phone for testing the case of
expired certificates. Additionally, we generate a valid certifi-
cate using Let’s Encrypt for a test domain to check domain
mismatch scenarios. This approach helps us achieve greater
coverage if an app uses a hardcoded root certificate store
instead of that of the OS (cf. rustls library).

Reverting to original certificate for correct validation. In
the case of correct certificate validation, our replaced certifi-
cate will be rejected leading to a failed connection, which may
affect the app’s functionality, preventing us to see subsequent
potentially improper validation. To address this issue, we rely
on TLS protocol alert messages to identify failures due to
correct TLS certificate validation. We developed an add-on
for mitmproxy that utilized the tls_failed_client event
hook, capturing TLS connection data when the proxy server
received a TLS error from the client. In this case, we whitelist
the combination of server IP address and TLS Server Name
Indication (SNI) and forward the connection to the SNI proxy
without modifying the original certificate.

Proxy implementation. Marvin utilizes three types of prox-
ies for TLS interception, namely HTTP forward, HTTP trans-
parent, and SNI proxy, leveraging mitmproxy for their imple-
mentation. When apps respect the system proxy, they automat-
ically utilize the forward proxy, which can capture both their
original HTTP method and the CONNECT method. However,
certain apps do not adhere to the system proxy settings and
establish direct connections with their server. As mentioned
in Sec. 3.2, these connections are forcefully forwarded to
the server, but the apps do not use the CONNECT method.
This makes reconstructing the original HTTP messages to
the CONNECT method challenging. To overcome this issue,
we enable the transparent proxy functionality mode in the
proxy server, which resolves the problem by modifying the
destination socket address without reconstructing the HTTP
messages. We also incorporate the SNI proxy functionality,
which enables Marvin to redirect connections that undergo
TLS certificate validation appropriately without interception.

Finally, our data collection includes all insecure HTTPS
connections obtained either through the proxy server or redi-
rected from eBPF, encryption/decryption data from ThirdEye,
SDK certificate validation functions and device information
(e.g., MAC address, phone number, and device email).
Inducing apps to re-establish connection. As mentioned
earlier, if the app rejects the certificate, Marvin reverts to the
original certificate for subsequent connections. However, the
app may not automatically attempt to re-establish the con-
nection after the failure. To address this issue, we modify
our UI interactor to interact with each UI object twice, po-
tentially triggering a re-establishment of connections caused
by a UI event. If the interactor does not discover any new UI

elements to explore, which could be the cause of the failed re-
connection, the interactor relaunches the app to check again.
Handling DBI-aware apps. Although we are unable to de-
feat most commercial packers as mentioned in Sec. 3.2, to
maximize analysis coverage, we have implemented a fall-
back mode to handle DBI detection. This mode involves
performing a preliminary check to determine if the app crash-
es/freezes upon opening. If a crash/freeze is detected, we
restart the analysis with our DBI tool (i.e., Frida) disabled.
We utilize the logcat command and the corresponding user
ID of the app to identify such crashes. Additionally, we moni-
tor the appearance of non-responsive windows by checking
the mCurrentFocus value through the dumpsys activity
activities command. The presence of a non-responsive
window indicates that the app has become frozen. This way,
Marvin can automatically continue the analysis of these apps
at the cost of losing fine-grained attribution.

4.3 Analysis and Attribution

In this section, we discuss the approaches Marvin applied
to collect and process data from the execution phase and to
perform attribution of certificate validation issues.
Identification of certificate validation issues. To filter out
traffic from a target app, Marvin compares the network
records obtained through eBPF with the insecure TLS connec-
tion records from the proxy for each misconfigured certificate
type during the data collection phase. If any insecure con-
nection from the app is detected, we perform the attribution
process to determine the origin of the improper certificate
validation.
Identification of certificate validation origins. At this point,
Marvin has obtained per-app insecure connection information
with certificate validation issues, but this is only from the
network perspective (i.e., traffic). The next step for Marvin
is to hook the specific functions responsible for the certifi-
cate validation issues for fine-grained attribution. Rahaman
et al. [39] introduced a static analysis tool for detecting cryp-
tographic vulnerabilities in Java, which demonstrated vari-
ous cryptographic API misuses. Inspired by their approach,
we have identified that the checkServerTrusted() (in
the X509TrustManager class) and verify() (in the Host-
nameVerifier class) interfaces, and the createSocket()
method (in the SSLSocketFactory class) can be misused for
improper certificate validation. Hence, to obtain stack traces
and certificate information, we used Frida to create hooks for
these functions and integrated them with Marvin. It is worth
noting that Java interfaces cannot be individually hooked;
instead, their implementations must be employed for hook-
ing. To identify the implementations of the certificate verifier
interfaces, we first leveraged Frida’s enumeration feature to
list all methods with the same function signature within the
app. Subsequently, we employed Java reflection to confirm
that their declaring class matches that of the interface’s class.

Mapping a TCP connection to a TLS session is challenging
as our target functions work at different semantic levels, e.g.,
the verify() function does not have access to any socket
information. To address this issue, we start our flow from
createSocket() and record the socket information. Then,
in checkServerTrusted(), with access to both certificate
information and socket information, we create a hash of the
certificate chain serials and map it with the socket information
(the certificate serials are different for each connection due
to on-the-fly certificate generation; see Sec. 4.2 under “Cer-
tificate generation and replacement”). Finally, in verify(),
we can extract the SNI name, and we re-calculate the hash
of the certificate chain serials and check if they match with
the socket information. This allows our tool to accurately
trace and map the connections and their corresponding TLS
certificate validation functions.

Performing attribution. We examine the stack traces to
check if the entity creating the TLS connection (highlighted
in blue in the stack traces in Listing 2 to Listing 7) is the same
entity executing the validation function (highlighted in red
in the listings, if different). The lines in between are from
standard network libraries (e.g., OkHttp) and thus the pattern
is straightforward to parse. We provide a list of stack traces
for each type of attribution from Listing 2 to Listing 7. In
Listing 2, the entity com.datayes.common triggered the TLS
certificate validation (blue, bold, line=5) and also performed
the actual validation (blue, bold, line=1), hence, this case be-
ing classified as “app connection validated by app code” (not
hijacked);

Listing 3 highlights the same issue for library code.
Listing 4 shows a validation hijacking case where
com.dnurse.main.ui created the TLS connection,
while com.tencent.bugly.proguard invoked check-
ServerTrusted to perform the certificate validation.
Therefore, this case is categorized as “app connection
validated by library code” (hijacking). A reversed hijacking
case is shown in Listing 5. Listing 6 demonstrates a case
where both the victim and improper actor are libraries
(but different ones). The package com.umeng.commonsdk,
a popular library, established a TLS connection with its
remote server, but the certificate validation was performed by
com.kuaishou.weapon (another popular library). Listing 7
shows a scenario where multiple certificate validation
hijackings occurred (but the actual consequence may depend
on execution timing); here, the certificate validation was
initially done by Tencent Bugly, followed by Baidu which
overrode the default verifier thereafter.

1 at com.datayes.common.net.interceptor.ssl.OkHttpSSLSocketFactory$1.checkServerTrusted(Native Method)
2 at com.android.org.conscrypt.Platform.checkServerTrusted(Platform.java:260)
3 at com.android.org.conscrypt.ConscryptEngine.verifyCertificateChain(ConscryptEngine.java:1638)
4 ...
5 at com.datayes.common_cloud.net.interceptor.TokenInterceptor.intercept(TokenInterceptor.java:97)

Listing 2: App connection validated by app code

1 at cn.jiguang.net.DefaultHostVerifier.verify(Native Method)
2 at com.android.okhttp.internal.io.RealConnection.connectTls(RealConnection.java:200)
3 at com.android.okhttp.internal.io.RealConnection.connectSocket(RealConnection.java:153)
4 ...
5 at cn.jiguang.net.HttpUtils.a(Unknown Source:196)
6 at cn.jiguang.net.HttpUtils.httpPost(Unknown Source:1)

Listing 3: Library connection validated by library code

1 at com.tencent.bugly.proguard.s.checkServerTrusted(Native Method)
2 at com.android.org.conscrypt.Platform.checkServerTrusted(Platform.java:260)
3 at com.android.org.conscrypt.ConscryptEngine.verifyCertificateChain(ConscryptEngine.java:1638)
4 ...
5 at com.dnurse.main.ui.FlashActivity.downLoadImage(FlashActivity.java:11)(SourceFile:341)
6 at com.dnurse.main.ui.FlashActivity$a.doInBackground(FlashActivity.java:1)

Listing 4: App connection validated by library (hijacking)

1 at rich.y$a.verify(Native Method)
2 at com.android.okhttp.internal.io.RealConnection.connectTls(RealConnection.java:200)
3 at com.android.okhttp.internal.io.RealConnection.connectSocket(RealConnection.java:153)
4 ...
5 at com.growingio.android.sdk.data.net.HttpService.performRequest(HttpService.java:132)
6 at com.growingio.android.sdk.data.net.HttpService.performRequest(HttpService.java:81)

Listing 5: Library connection validated by app (hijacking)

1 at com.kuaishou.weapon.p0.q2$a.checkServerTrusted(Native Method)
2 at com.android.org.conscrypt.Platform.checkServerTrusted(Platform.java:260)
3 at com.android.org.conscrypt.ConscryptEngine.verifyCertificateChain(ConscryptEngine.java:1638)
4 ...
5 at com.umeng.commonsdk.statistics.internal.c.a(Unknown Source:170)
6 at com.umeng.commonsdk.statistics.internal.c.a(Unknown Source:57)

Listing 6: Library connection validated by another library
(hijacking)

1 /* ————– (1) Baidu is hijacked by Bugly ————– */
2 at com.tencent.bugly.proguard.s$1.checkServerTrusted(Native Method)
3 at com.android.org.conscrypt.Platform.checkServerTrusted(Platform.java:260)
4 at com.android.org.conscrypt.ConscryptEngine.verifyCertificateChain(ConscryptEngine.java:1638)
5 ...
6 at com.baidu.lbsapi.auth.g.a(Unknown Source:47)
7 at com.baidu.lbsapi.auth.g.a(Unknown Source:30)
8 /* ———— (2) Baidu is validated by Baidu again ———— */
9 at com.baidu.location.h.p.checkServerTrusted(Native Method)

10 at com.android.org.conscrypt.Platform.checkServerTrusted(Platform.java:260)
11 at com.android.org.conscrypt.ConscryptEngine.verifyCertificateChain(ConscryptEngine.java:1638)
12 ...
13 at com.baidu.location.h.l.run(Unknown Source:171)

Listing 7: Multiple hijacking actors (race condition)

Detecting information leaks. We collect traffic from the af-
fected communications due to validation issues, including
hijacking. We then proceed to perform deep packet inspec-
tion, a detailed examination of network traffic that includes
the analysis of both HTTPS headers and bodies, to identify
information leaks that may have occurred due to insecure
TLS certificate validation, as well as extracting potential cus-
tom encryption channels (additional encryption on top of a
standard protocol) using the data from ThirdEye [37].

5 Results

Experimental setup and app dataset. We run the selected
apps on two Pixel 7, and one Pixel 6 phone with Android 13
factory images, and the analysis scripts on three desktop PCs
with Ubuntu 22.04 (Intel Core i7-10700 CPU, 48GB RAM,
and two i7-8700 CPUs with 16GB RAM).

For the dataset to represent popular Android apps, we down-
load top-rated apps from 360 Mobile Assistant (Qihoo 360
Appstore, a popular Chinese app store [1]) for Chinese apps,
and Google Play apps from Google Play store based on the
rank of APKPure [4], covering a variety of categories, such

as online shopping, entertainment, travel, office tools, and
finance. These apps are distinct and demonstrate unique char-
acteristics from the perspective of both functionality and se-
curity [48]. We eventually collected a total of 4121 Chinese
apps and 5452 Google Play app as our dataset to start with.

Marvin executed each app four times, with each run dedi-
cated to testing a specific certificate problem. For each run, it
typically required around three minutes to explore and interact
with UI elements (i.e., around 12 minutes per app). However,
if custom encryption is detected during a certificate validation
test, Marvin will run the app twice for this specific certificate
test in order to detect insecure custom encryption. In such sce-
narios, Marvin executes the apps between 4–8 times, varying
based on the detection of custom encryption. Each app took
approximately 12–24 minutes to conduct a comprehensive
analysis of the four types of certificate validation issues and
identify any potential insecure custom encryption.

During the testing phase, we observed that 2096/4121
(50.9%) of Chinese apps experienced crashes (either handled
by their developers or not), and 948 of them did not gener-
ate network traffic, while 2147/5452 (39.4%) of Google Play
apps crashed, 275 of them without network traffic. After we
disabled Frida, 329/948 (34.7%) Chinese apps and 163/275
(59.3%) Google Play apps started to connect to their remote
servers, indicating the presence of anti-hooking mechanisms
in these apps. We were unable to attribute all the remaining
crashes to a specific cause on a per-app basis. Examples of
speculated causes include root detection, certificate pinning,
and device incompatibility. We also observed that 408 of the
Chinese apps and 140 of the Google Play apps generated no
network traffic despite no crashing. Hereafter, we exclude the
apps without observed network traffic from reported results,
and consider the adjusted totals of 2765 and 5061, for Chinese
apps and Google Play apps, respectively.

5.1 Certificate Validation Issues

We found that 1529/2765 (55.3%) of Chinese apps were iden-
tified to have at least one of the four certificate validation is-
sues; in contrast, the percentage of insecure Google Play apps
was much lower: 322/5061 (6.4%). In terms of each certificate
validation issue, for Chinese apps, 1307/2765 (47.3%) were
identified with unverified certificate signatures, 1375/2765
(49.7%) trusted self-signed certificates, 1310/2765 (47.4%)
accepted expired certificates, and 1059/2765 (38.3%) ignored
mismatched domain in the certificate validation. For Google
Play apps, 244/5061 (4.8%) were identified with unverified
certificate signatures, 243/5061 (4.8%) trusted self-signed
certificates, 231/5061 (4.6%) accepted expired certificates,
and 236/5061 (4.7%) ignored mismatched domain in the cer-
tificate validation. We also grouped the apps based on the
number of insecure TLS connections, e.g., apps with 1 to 10
insecure TLS connections, 11 to 20, 21 to 30, and over 30;
see Table 1. In the four certificate test cases, Chinese apps

established a significantly higher percentage of insecure TLS
connections; see Table 5 (in the appendix).

We observe that 1) the percentage of apps from the Chinese
app store possessing certificate validation issues is notably
higher compared to Google Play apps; 2) the proportion of
apps in both Google Play and the Chinese app store with
each validation issue does not show a significant difference;
and 3) for both the affected number of apps and the resulting
insecure connections, Chinese apps are significantly higher
than Google Play apps, primarily due to the use of a small
number of highly popular but faulty libraries in Chinese apps.

5.2 Attribution Results

Attributed insecure apps. We were able to attribute the in-
secure connections of the four certificate validation types
to 1014/1529 (66.3%) Chinese apps and 139/322 (43.2%)
Google Play apps; see Table 2. We also observe that 1) for
the non-hijacking cases, improper validation happens more to
libraries in Chinese apps (48.9%), while for Google Play apps
it is more caused by the app code itself (30.7%). This leads to
more overall apps being affected in the Chinese app store (as
a popular faulty library can make many apps vulnerable).
Attributed insecure TLS connections. We first group the
parties (app vs. library code) initiating the insecure TLS con-
nections. For Chinese apps, the average percentage of insecure
TLS connections created by libraries is 76.5% across four cer-
tificate test cases, while the connections initiated by apps
themselves (i.e., app code) account for 23.5%; this trend is re-
versed in Google Play apps (16.2% from libraries and 83.8%
from apps, see Table 8 in the appendix). We then identify the
entities responsible for these insecure TLS connections, i.e.,
which code performs the insecure validation. We were able
to attribute 68.4% insecure TLS connections in Chinese apps
(10.0% were from app code, and 58.4% were from libraries),
see Table 3. In contrast, we could attribute 44.5% of insecure
TLS connections for Google Play apps (21.0% from app code,
and 23.6% from libraries). We could attribute more Chinese
apps due to the prevalence of a few faulty libraries (which
we could attribute) in them. Moreover, in Google Play apps,
the percentage of insecure TLS connections caused by faulty
library validators was merely 7.7%, while faulty validators in
app code led to 36.8% of insecure TLS connections.
Libraries involved in hijacked validation. We identified
the libraries that call setDefaultSSLSocketFactory() and
setDefaultHostnameVerifier() with insecure validation
functions, and thereby, hijack certificate validation; see Ta-
ble 4. For example, Bugly (com.tencent.bugly) overrides
the default SSL socket factory through setDefaultSSLSock-
etFactory(). This results in hijacking Android OkHttp’s
TLS connections for non-Bugly TLS connections in apps that
utilize Bugly. ByteDance SDK (com.bytedance.sdk) [7]
is another popular library, designed to log events in mobile
apps and send them to TikTok for targeted ads, measurement,

Certificate Type Chinese Apps (#apps, % of apps) Google Play Apps (# apps, % of apps)
[1, 10] [11, 20] [21, 30] >30 [1, 10] [11, 20] [21, 30] >30

Unverified Certificate Signature 910 (32.9%) 214 (7.7%) 95 (3.4%) 88 (3.2%) 208 (4.1%) 20 (0.4%) 4 (0.1%) 12 (0.2%)
Self-signed Certificate 971 (35.1%) 216 (7.8%) 99 (3.6%) 89 (3.2%) 208 (4.1%) 21 (0.4%) 5 (0.1%) 9 (0.2%)
Expired Certificate 938 (33.9%) 206 (7.5%) 83 (3.0%) 83 (3.0%) 200 (4.0%) 14 (0.3%) 9 (0.2%) 8 (0.2%)
Domain Mismatch 805 (29.1%) 151 (5.5%) 64 (2.3%) 39 (1.4%) 216 (4.3%) 9 (0.2%) 6 (0.1%) 5 (0.1%)
Total 1287 (46.5%) 406 (14.7%) 195 (7.1%) 128 (4.6%) 298 (5.9%) 32 (0.6%) 14 (0.3%) 15 (0.3%)

Table 1: The number and percentage of apps that established insecure TLS connections (grouped in different ranges) in each type
of certificate validation issue among Google Play and Chinese apps. Total denotes the number and percentage of unique apps that
possess one or multiple of the four types (de-duplicated).

Attribution Type #App (CHN) #App (GP)
App connection validated by app code 361 (23.6%) 99 (30.7%)
Library connection validated by library code 747 (48.9%) 28 (8.7%)
App connection hijacked by library code 102 (6.7%) 12 (3.7%)
Library connection hijacked by app code 194 (12.7%) 50 (15.5%)
Cross-library hijacking 360 (23.5%) 23 (7.1%)

Table 2: The fine-grained attribution results; percentages are
calculated over all insecure apps; App (CHN) denotes Chinese
apps; App (GP) denotes Google Play apps. Note that the same
app may be counted under more than one attribution type.

and conversion optimization; this SDK overrides the default
SSL socket factory using setDefaultSocketFactory().
Developers also often incorporate the Baidu Location SDK
(com.baidu.location) [5], to leverage Baidu services to ac-
cess accurate location data and enable location-based features
within their apps. Similar to Bugly, Baidu SDKs also override
the default SSL socket factory through setDefaultSSLSock-
etFactory(). Note that the Bugly SDK is also found in 12
Google Play apps in our dataset.

Race conditions in certificate validation. We noticed that
in 417 (27.3%) insecure Chinese apps, multiple parties
(e.g., two libraries, or an app and a library) did the over-
ride, leading to uncertainty about validation logic, deter-
mined by timing. Specifically, the effective validation func-
tion relies on who set the default SSL Socket Factory or
default Hostname verifier the last, right before a given val-
idation call. For example, in com.lingan.yunqi, we ob-
served that com.kepler.sdk called setDefaultSSLSock-
etFactory() first, and consequently validated the certificate
of ap1.qiyukf.com. Later, Bugly (com.tencent.bugly)
invoked setDefaultSSLSocketFactory(), and thus hi-
jacked the validation for baichuan-sdk.alicdn.com and
baichuan-sdk.taobao.com. We also observed apps in
which both setDefaultSSLSocketFactory() and setDe-
faultHostnameVerifier() functions were invoked. For
instance, in the case of com.mobivans.onestrokecharge,
Bugly modified the default SSL socket factory by invok-
ing setDefaultSSLSocketFactory(), which validated the
certificate of the host i.sdkyounger.com. Subsequently,
com.kuaishou.weapon called setDefaultHostnameVeri-
fier(), and used its faulty verifier for android.bugly.qq.
com, i.sdkyounger.com, ulog.umeng.com, etc.

5.3 Information Leaks
We perform deep packet inspection to detect information leaks
resulting from insecure TLS connections vulnerable to MITM
attacks, due to improper certificate validation. In the Chinese
app dataset, we found that 1358/1529 (88.8%) of the apps
transmit sensitive information using insecure TLS connec-
tions. Among them, 1354 (99.7%) use plain insecure TLS,
453 (33.4%) use custom encryption on top of insecure TLS,
and 163 (12.0%) use weak/broken custom encryption on top
of insecure TLS. For the Google Play dataset, we observed
that 278/322 (86.3%) of the apps transmit sensitive infor-
mation through plain insecure TLS connections. We group
the leaked information into five distinct categories: Device,
Network, Network Location, Location, and User Assets (see
Table 7 in the appendix). We noticed that some apps use cus-
tom encryption to transmit user data. However, it is unclear
whether the developers are aware of the TLS validation issues
and thus attempted to (poorly) mitigate such issues, or if they
are trying to conceal their activity on the network.

6 Case Studies

To further demonstrate the severity and practicality of the
identified TLS certificate validation hijacking instances, we
selectively analyze several apps (from different categories)
for their susceptibility, and implement the exploits on our
own devices. We group the exploit consequences to facilitate
the discussion here. Note that for all the account takeover,
impersonation, phishing attacks, and PII disclosure, we used
our own devices for both attacker and victim devices on our
local WiFi network, and our own test accounts and PII—i.e.,
the example attacks did not affect any user or provider. It is
also reflected in all the studied cases that the victim party (e.g.,
end-users, app developers, identity providers, ad networks) is
unaware of such hijacking and not to blame. We summarize
our attacks and consequences in Table 6 (in the appendix).
Account takeover and impersonation. Android apps sup-
port various methods for user authentication, including app-
specific login, and the use of third-party identity providers
(IdPs) like Facebook, X/Twitter, and Google. Compared to
affecting a single app, we have found a more worrisome fact
that the SDKs used to interact with such IdPs can also be
affected by certificate validation hijacking. For example, Di-

Connection Validation Code Hijacked Attribution # Connection (Chinese) # Connections (Google Play)
App connection App code No AppConnectionValidatedByAppCode 3840 (7.8%) 1311 (19.9%)
Lib connection Lib code No LibConnectionValidatedByLibCode 12,531 (25.4%) 266 (4.0%)
App connection Lib code Yes AppConnectionHijackedByLibCode 1075 (2.2%) 72 (1.1%)
Lib connection App code Yes LibConnectionHijackedByAppCode 4623 (9.4%) 1118 (17.0%)
Lib connection Another Lib’s code Yes LibConnectionHijackedByLibCode 11,598 (23.6%) 170 (2.6%)

Table 3: The fine-grained attribution result of insecure TLS connections

voom (com.divoom.Divoom, available on Google Play for
pixel art editing, 500K+ downloads) employs X/Twitter and
Facebook for user authentication, in addition to its indepen-
dent login component, and uses Bugly for bug reporting. No-
tably, Bugly replaces the default TLS certificate verifier with
its insecure verifier upon app launch. Divoom’s independent
login component utilizes the Square OkHttp implementation,
ensuring its login form remains unaffected. However, it relies
on FBAndroidSDK [10] and Twitter4J [19] libraries to inter-
act with the IdPs, which are dependent on Android’s OkHttp
implementation, and thus vulnerable to Bugly’s validation
hijacking. We managed to eavesdrop on the OAuth traffic
(i.e., MITM), and get the OAuth access token, and and ex-
tract user data from the corresponding X/Twitter (e.g., Tweets,
lists, collections, profile information, and account settings)
and Facebook (e.g., user email) accounts, as well as access
the user’s Divoom account.

Apart from SSO services, we also observed some apps’
independent logins being affected by such hijacking and thus
exposed credentials such as (hashed) long-term/one-time pass-
words. For instance, among the apps from the Qihoo appstore,
asia.share.superayiconsumer is affected by the Baidu
location service; and com.guixue.m, and ch999.app.UI are
affected by Bugly.

Several apps also undermine their own login pages
by customizing TLS validation functions. Such apps
include: cn.yonghui.hyd, android.jianzhilieren,
and cn.mopon.film.xflh. On the other hand,
com.belugaedu.amgigorae uses a secure login page,
but it fetches certain parts of its content remotely as HTML
code without proper certificate validation, which we exploited
for a demo phishing attack (see Fig. 3 in the appendix).
Ad modification and phishing. Ad networks/platforms typ-
ically use HTML5 to load and render ad content. Given the
prevalence of ads on Android and the ease of modification
of HTML, such content becomes an attractive target for at-
tackers seeking to launch phishing attacks by modifying ads
to mimic the app’s legitimate login form. We found that the
majority of ad platforms in the Google Play Store dataset, in-
cluding AppLovin, Amazon Ads, and Facebook Ads, employ
the Android OkHttp library, making them vulnerable to the
TLS certificate verifier override.

For instance, Paint by Number: Coloring Game
(com.paint.bynumber.color.coloringgames, 100M+
downloads), employs Bugly for bug reporting, and utilizes
AppLovin, Facebook Ads, and Amazon Ads for displaying

ads. By exploiting the validation hijacking by Bugly, we
successfully manipulated the ad content loaded by AppLovin
(from the network) for a phishing attack (see Fig. 4 in the
appendix). Conversely, as discussed earlier, overriding the
default TLS certificate verifier can also be performed by the
app itself and can affect other third-party SDKs and libraries
within it. For example, Playit (com.playit.videoplayer,
a video player app with 100M+ downloads) uses various
ad SDKs, including Flat Ads, Moloco, Smaato Ads, and
AppLovin, among others. This app’s code overrides the
default TLS certificate verifier with an insecure one, affecting
all the ads SDKs, opening the door to phishing attacks the
same way (as in Fig. 4).

Remote code execution. Surprisingly, we observed that 53
apps in the Chinese dataset transmit Dalvik Executable files
(dex files) over TLS connections hijacked by Bugly (and
thus made vulnerable to MITM). 17 of these apps transmit
Dalvik data to their servers, while 41 apps receive such data
(five apps perform both). Such transmission of executable
code over insecure connections exposes the apps (and per-
haps the app servers) to code injection attacks, allowing mali-
cious actors to manipulate the behavior of the app/server
(cf. [52]). We randomly selected a few apps for manual
analysis to understand the impact of this phenomenon. For
com.android.tutuerge, a heavily packed app with 10M+
downloads, the transmitted binary is used to load a video
player. For verification, we modified the transmitted binary
using Apktool and the app performed no integrity checks
before loading the binary into memory. This phenomenon
can have significant implications for the security and privacy
of user data within the app; e.g., to abuse the app’s permis-
sions to collect privacy-sensitive data, place a keylogger, and
compromise user credentials.

Sensitive information leakage. Apps that access various
sensitive information from the phone and send it to their
remote endpoints, may expose sensitive PII to network at-
tackers due to certificate validation hijacking. Examples in-
clude: asia.share.superayiconsumer exposes a user’s
GPS location due to TLS validation hijacking by Baidu
(com.baidu.location); cn.com.jschina.news leaks GPS lo-
cation, contact names, phone manufacturer, operator, and
installed packages due to Bugly validation hijacking; and
com.newsweekly.livepi exposes device fingerprinting in-
formation due to validation hijacking by Alibaba log service.

7 Prevalence, Root Cause, Mitigation, and Lim-
itations

Prevalence of certificate validation function override. In
the dynamic analysis, we observed 519/2765 (18.8%) Chinese
apps, and 152/5061 (3.0%) Google Play apps involved default
validation function override regardless of whether it is secure
or not. Among them, 391/519 (75.3%) of the Chinese app
cases and 17/152 (11.2%) of the Google Play cases were
insecure, caused by a third-party library.

Dynamic analysis is subject to limited code coverage by na-
ture, e.g., even though our UI instrumentation is quite compre-
hensive, we still may miss validation issues for TLS connec-
tions that are initiated only after login (as our login coverage
is only partial). To better understand the prevalence of such
insecure override functions in apps, we conducted a static
analysis using Androguard [21] on our dataset. This analysis
is aimed to cover override functions in both first-party and
third-party code that were not triggered in the dynamic analy-
sis. Subsequently, we employed the attribution results from
our dynamic analysis to match with the class names in the
static analysis, identifying vulnerable third-party code. Specif-
ically, our analysis revealed that 1634/4121 (39.7%) Chinese
apps and 1094/5452 (20.1%) Google Play apps contain calls
to the default certificate validation override functions. Fur-
thermore, we identified 684/1634 (41.9%) Chinese apps and
54/684 (7.9%) Google Play apps that utilize a third-party li-
brary that we identified as insecure from our dynamic analysis.
Consequently, through a combination of dynamic and static
analyses, we observed 1937/4121 (47.0%) Chinese apps and
1162/5452 (21.3%) Google Play apps utilizing these override
functions, with 927/1937 (47.9%) Chinese apps and 57/1162
(4.9%) Google Play apps incorporating insecure validation
functions through their third-party libraries; see Table 4 for the
number of occurrences of popular insecure libraries among
the apps through both static analysis and dynamic analysis
with their intersection.

SDK Name SDK Package | D | | S | | D∩S | | D∪S |
Tencent Bugly com.tencent.bugly 342 444 138 684
Baidu Location com.baidu.location 39 107 17 129
Bytedance com.bytedance.sdk 32 251 7 276
JingDong Kelper com.kepler.sdk 14 27 7 34
Kuaishou com.kuaishou.weapon 9 21 4 26
Alibaba Log com.alibaba.mtl 5 1 0 6

Table 4: Example high-profile libraries that hijack certificate
validation; D represents libraries found in dynamic analysis,
S represents libraries found in static analysis; D∩S denotes
libraries observed in both dynamic and static analyses, while
D∪S denotes libraries observed in either dynamic or static
analysis.

Note that we only use the static analysis to reflect the preva-
lence of the insecure override issue from a different angle,
and the presence of a certificate validation function override
in the static analysis may not mean it is actually used/called,

e.g., dead code that is never reached at runtime.
Root cause. The behavior of HTTP implementations varies
in terms of retrieving default values for SSLSocketFactory
and HostnameVerifier, as we observe in various libraries
like Apache HttpClient, Volley, and Square OkHttp. While
these libraries typically abstain from retrieving such val-
ues, Android’s OkHttp implementation notably does so post-
initialization, potentially utilizing insecure validation func-
tions. Conversely, Square OkHttp (from version 1.5, March
2014) remains immune by refraining from retrieval before an
HTTPS call. As we observed, third-party libraries often prefer
Android OkHttp, while first-party Android app code predomi-
nantly opts for Square OkHttp. We also identified instances
where the default certificate verifier was overridden with an
insecure verifier, yet Android’s OkHttp continued to produce
secure HTTPS requests. Further investigation revealed that
this behavior is due to the use of an HTTP connection pool
inherited from Square OkHttp. New HTTP/S connections in
a pool continue to reuse previously available TLS connec-
tions (prior to hijacking), although they remain vulnerable
and exploitable by an attacker resetting the connection to in-
duce the library to establish a new TLS connection. Android
appears to have incorporated the use of DefaultSSLSocket-
Factory, encompassing X509TrustManager and Default-
HostnameVerifier, to address issues related to the SPDY
protocol [22]. Lastly, the multifaceted role of SSLSocket-
Factory in TLS customization, including cipher list modifi-
cation, may further justify the utilization of such values.

It is also worth noting that validation override is not limited
to Android OkHttp. Through manual code investigation, we
found that other libraries (e.g., jcabi-http [13] and ion [12])
exhibit similar behaviors, although we did not encounter any
calls to their code in our dataset. In short, although all the val-
idation problems we found in our dataset are due to Android
OkHttp, other HTTP client implementations with similar be-
havior can also cause the same issues.
Mitigation for global override. Possible solutions to miti-
gate the global certificate verifier override can be implement-
ed/enforced by the Android OS (in the longer-term), and by
developers (for immediate benefit). The Privacy Sandbox as
introduced in Android 13, which separates the runtime envi-
ronment of libraries/SDKs from that of the app, may address
this issue if adopted and enforced. However, we did not ob-
serve any apps that use this feature in our work. If developers
cannot use the Privacy Sandbox, possibly due to incompat-
ibility with third-party SDKs, they can consider alternative
short-term solutions. For example, they can use public key
pinning, or re-assign the Android default SSLSocketFactory
and HostnameVerifier for every SSLSocketFactory class
that initiates a connection (i.e., to prevent the use of a hijacked
verifier). Developers can also use other HTTP clients (e.g.,
Square OkHttp, Apache) that do not introduce the problematic
override behaviors as in the default Android OkHttp.
Limitations. Our findings are a lower bound of the actual val-

idation failures due to the following factors. (i) In the face of
strong commercial packers, for a small portion of the packed
apps with DBI detection, we analyze them up to when they
crash after which Frida hooking is turned off, i.e., additional
attribution data is unavailable. (ii) Certain DBI-aware apps
may not crash but avoid misbehavior silently. (iii) Although
we identified all the app validation issues on both the na-
tive and Java sides, we were unable to hook native certificate
validation functions due to functions in .so libraries being
not standardized, or the libraries often being obfuscated; as
a result, we could not collect attribution data from such na-
tive functions. Furthermore, our determination of third-party
code/hostnames can be further augmented with an exhaustive
list (accurate but not scalable, cf. Muslukhov et al. [32]).

8 Conclusion

We shed light on the significant threat posed by improper TLS
certificate validation in the Android ecosystem, especially
when overriding/hijacking the default validation functions is
possible unbeknownst to the parties involved in an app’s oper-
ation. We conducted an automated analysis and attributed the
improper validation to specific packages in an app, as opposed
to the entire app. We revealed that third-party libraries play a
more critical role in improper TLS validation compared to app
code, which developers may be unable to address easily. The
root cause as we identified is not however these third-party
developers, but Google’s modifications to Android’s default
OkHttp implementation, which Android security team, as of
writing did not take any steps to rectify. Our findings em-
phasize the urgent need for increased awareness among app
developers regarding TLS security.

References

[1] 360 Mobile Assistant - Qihoo Appstore. http://
zhushou.360.cn/.

[2] 360 reinforced guarantee - 360 security. https://
jiagu.360.cn/#/global/index.

[3] Aliju security - application hardening. https:
//jaq-doc.alibaba.com/docs/doc.htm?treeId=
243&articleId=105508&docType=1.

[4] APKPure - Download APK on Android with free online
APK downloader. https://apkpure.com/.

[5] Baidu Location SDK. https://lbsyun.baidu.com/
products/location.

[6] Bangcle Security. https://www.bangcle.com/.

[7] ByteDance SDK. https://github.com/bytedance/
tiktok-business-android-sdk.

[8] eadb - eBPF Android Debug Bridge. https://github.
com/tiann/eadb.

[9] eBPF - Extended Berkeley Packet Filter. https://
ebpf.io/.

[10] Facebook SDK for Android. https://developers.
facebook.com/docs/android/.

[11] iJiami: Sharing IoE and guarding the smart world.
https://www.ijiami.cn/enindex.

[12] Ion - Android asynchronous networking and image load-
ing. https://github.com/koush/ion.

[13] Jcabi-http - fluent java HTTP client. https://square.
github.io/okhttp/.

[14] Magisk. https://github.com/topjohnwu/Magisk/
releases.

[15] Mitmproxy. https://mitmproxy.org/.

[16] NetEase Yidun - one-stop security solution. https:
//dun.163.com/locale/en.

[17] Tencent Bugly SDK. https://bugly.qq.com/docs/.

[18] The AppInChina App Store Index: the market-leading
index of China’s largest Android app stores. https:
//appinchina.co/market/app-stores/.

[19] Twitter4j SDK. https://twitter4j.org/.

[20] Giuseppe Aceto, Domenico Ciuonzo, Antonio Montieri,
Valerio Persico, and Antonio Pescapé. Mirage: Mobile-
app traffic capture and ground-truth creation. In 2019
4th International Conference on Computing, Communi-
cations and Security (ICCCS), pages 1–8, 2019.

[21] Androguard. Androguard, 2024. https://github.
com/androguard/androguard.

[22] Android, Android Source Code. https://cs.
android.com/android/platform/superproject/
main/+/main:external/okhttp/repackaged/
android/src/main/java/com/android/
okhttp/HttpsHandler.java;l=101-102;drc=
83f1f55b26800dfa1e5472dd5a42f598f4e3c224
Accessed 19-02-2024.

[23] Stefano Berlato and Mariano Ceccato. A large-scale
study on the adoption of anti-debugging and anti-
tampering protections in Android apps. Journal of In-
formation Security and Applications, 52, 2020.

[24] Kai Chen, Xueqiang Wang, Yi Chen, Peng Wang, Yeon-
joon Lee, XiaoFeng Wang, Bin Ma, Aohui Wang,
Yingjun Zhang, and Wei Zou. Following Devil’s Foot-
prints: Cross-platform analysis of potentially harmful

libraries on Android and iOS. In IEEE Symposium on
Security and Privacy, San Jose, CA, USA, May 2016.

[25] Huajun Cui, Guozhu Meng, Yan Zhang, Weiping Wang,
Dali Zhu, Ting Su, Xiaodong Zhang, and Yuejun Li.
TraceDroid: A robust network traffic analysis framework
for privacy leakage in Android apps. In Science of Cyber
Security, pages 541–556, Matsue, Japan, 2022.

[26] Soteris Demetriou, Whitney Merrill, Wei Yang, Aston
Zhang, and Carl A Gunter. Free for all! Assessing user
data exposure to advertising libraries on Android. In
NDSS, San Diego, CA, USA, February 2016.

[27] Danny Dolev and Andrew Yao. On the security of public
key protocols. IEEE Transactions on information theory,
29(2):198–208, 1983.

[28] Yue Duan, Mu Zhang, Abhishek Vasisht Bhaskar, Heng
Yin, Xiaorui Pan, Tongxin Li, Xueqiang Wang, and Xi-
aoFeng Wang. Things you may not know about Android
(un) packers: A systematic study based on whole-system
emulation. In NDSS, 2018.

[29] Sascha Fahl, Marian Harbach, Thomas Muders, Lars
Baumgärtner, Bernd Freisleben, and Matthew Smith.
Why Eve and Mallory love Android: An analysis of
Android SSL (in) security. In Proceedings of the 2012
ACM conference on Computer and communications se-
curity, pages 50–61, 2012.

[30] Sascha Fahl, Marian Harbach, Henning Perl, Markus
Koetter, and Matthew Smith. Rethinking SSL develop-
ment in an appified world. In Proceedings of the 2013
ACM SIGSAC conference on Computer & communica-
tions security, pages 49–60, 2013.

[31] Martin Georgiev, Subodh Iyengar, Suman Jana, Rishita
Anubhai, Dan Boneh, and Vitaly Shmatikov. The most
dangerous code in the world: Validating SSL certificates
in non-browser software. In Proceedings of the 2012
ACM conference on Computer and communications se-
curity, pages 38–49, 2012.

[32] Ildar Muslukhov, Yazan Boshmaf, and Konstantin
Beznosov. Source attribution of cryptographic API mis-
use in Android applications. In Proceedings of the 2018
on Asia Conference on Computer and Communications
Security, pages 133–146, 2018.

[33] Trung Tin Nguyen, Michael Backes, Ninja Marnau, and
Ben Stock. Share first, ask later (or never?)-Studying
violations of GDPR’s explicit consent in Android apps.
In Proceedings of the USENIX Security Symposium
(USENIX Security’21), 2021.

[34] Ole André Vadla Ravnås. Frida, 2022. https://frida.
re/.

[35] Marten Oltrogge, Nicolas Huaman, Sabrina Amft,
Yasemin Acar, Michael Backes, and Sascha Fahl. Why
Eve and Mallory still love Android: Revisiting TLS
(In)Security in Android applications. In Proceedings of
the USENIX Security Symposium (USENIX Security’21),
pages 4347–4364, August 2021.

[36] Andrea Possemato and Yanick Fratantonio. Towards
HTTPS everywhere on Android: We are not there yet.
In Proceedings of the USENIX Security Symposium
(USENIX Security’20), pages 343–360, 2020.

[37] Sajjad Pourali, Nayanamana Samarasinghe, and Mo-
hammad Mannan. Hidden in plain sight: Exploring
encrypted channels in Android apps. In Proceedings of
the 2022 ACM SIGSAC Conference on Computer and
Communications Security, pages 2445–2458, 2022.

[38] Amogh Pradeep, Muhammad Talha Paracha, Protick
Bhowmick, Ali Davanian, Abbas Razaghpanah, Tae-
joong Chung, Martina Lindorfer, Narseo Vallina-
Rodriguez, Dave Levin, and David Choffnes. A compar-
ative analysis of certificate pinning in Android & iOS.
In Proceedings of the 22nd ACM Internet Measurement
Conference, pages 605–618, 2022.

[39] Sazzadur Rahaman, Ya Xiao, Sharmin Afrose, Fahad
Shaon, Ke Tian, Miles Frantz, Murat Kantarcioglu, and
Danfeng (Daphne) Yao. CryptoGuard: High precision
detection of cryptographic vulnerabilities in massive-
sized Java projects. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications
Security, page 2455–2472, 2019.

[40] Abbas Razaghpanah, Arian Akhavan Niaki, Narseo
Vallina-Rodriguez, Srikanth Sundaresan, Johanna
Amann, and Phillipa Gill. Studying TLS usage in
Android apps. In Proceedings of the 13th International
Conference on emerging Networking EXperiments and
Technologies, pages 350–362, 2017.

[41] Joel Reardon, Álvaro Feal, Primal Wijesekera, Amit
Elazari Bar On, Narseo Vallina-Rodriguez, and Serge
Egelman. 50 ways to leak your data: An exploration
of apps’ circumvention of the Android permissions sys-
tem. In Proceedings of the USENIX Security Symposium
(USENIX Security’19), 2019.

[42] Joel Reardon, Nathan Good, Robert Richter, Narseo
Vallina-Rodriguez, Serge Egel-man, and Quentin Pal-
frey. Jpush away your privacy: A case study of jiguang’s
android SDK. International Computer Science Institute,
2020.

[43] RFC 5280. Internet X.509 public key infrastructure
certificate and certificate revocation list (CRL) profile,
2008. https://tools.ietf.org/html/rfc5280.

[44] Christian Schindler, Müslüm Atas, Thomas Strametz,
Johannes Feiner, and Reinhard Hofer. Privacy leak iden-
tification in third-party Android libraries. In 2022 Sev-
enth International Conference On Mobile And Secure
Services (MobiSecServ), pages 1–6. IEEE, 2022.

[45] Anastasia Shuba and Athina Markopoulou. NoMoATS:
Towards automatic detection of mobile tracking. Pro-
ceedings on Privacy Enhancing Technologies, 2020(2),
2020.

[46] David Sounthiraraj, Justin Sahs, Garret Greenwood,
Zhiqiang Lin, and L. Khan. SMV-Hunter: Large scale,
automated detection of SSL/TLS man-in-the-middle vul-
nerabilities in Android apps. In Network and Distributed
System Security Symposium, 2014.

[47] StatCounter. Mobile operating system market share
worldwide, 2022. https://gs.statcounter.com/
os-market-share/mobile/worldwide.

[48] Haoyu Wang, Zhe Liu, Jingyue Liang, Narseo Vallina-
Rodriguez, Yao Guo, Li Li, Juan Tapiador, Jingcun Cao,
and Guoai Xu. Beyond Google Play: A large-scale
comparative study of Chinese Android app markets. In
Proceedings of the Internet Measurement Conference
2018, pages 293–307, 2018.

[49] Jice Wang, Yue Xiao, Xueqiang Wang, Yuhong Nan,
Luyi Xing, Xiaojing Liao, JinWei Dong, Nicolas Ser-
rano, Haoran Lu, XiaoFeng Wang, et al. Understand-
ing malicious cross-library data harvesting on Android.
In Proceedings of the USENIX Security Symposium
(USENIX Security’21), pages 4133–4150, 2021.

[50] Yingjie Wang, Xing Liu, Weixuan Mao, and Wei Wang.
DCDroid: Automated detection of SSL/TLS certificate
verification vulnerabilities in Android apps. In Proceed-
ings of the ACM Turing Celebration Conference-China,
pages 1–9, 2019.

[51] Yingjie Wang, Guangquan Xu, Xing Liu, Weixuan Mao,
Chengxiang Si, Witold Pedrycz, and Wei Wang. Identi-
fying vulnerabilities of SSL/TLS certificate verification
in Android apps with static and dynamic analysis. Jour-
nal of Systems and Software, 167:110609, 2020.

[52] Ka Lok Wu, Man Hong Hue, Ngai Man Poon, Kin Man
Leung, Wai Yin Po, Kin Ting Wong, Sze Ho Hui, and
Sze Yiu Chau. Back to school: On the (in)security of
academic VPNs. In Proceedings of the USENIX Security
Symposium (USENIX Security’23), Anaheim, CA, USA,
August 2023.

[53] Lei Xue, Hao Zhou, Xiapu Luo, Yajin Zhou, Yang Shi,
Guofei Gu, Fengwei Zhang, and Man Ho Au. Hap-
per: Unpacking Android apps via a hardware-assisted

approach. In 2021 IEEE Symposium on Security and
Privacy (SP), pages 1641–1658. IEEE, 2021.

[54] Wenbo Yang, Yuanyuan Zhang, Juanru Li, Junliang Shu,
Bodong Li, Wenjun Hu, and Dawu Gu. Appspear: Byte-
code decrypting and dex reassembling for packed An-
droid malware. In Research in Attacks, Intrusions, and
Defenses: 18th International Symposium, RAID 2015,
Kyoto, Japan, November 2-4, 2015. Proceedings, pages
359–381. Springer, 2015.

[55] Yueqian Zhang, Xiapu Luo, and Haoyang Yin. Dex-
hunter: Toward extracting hidden code from packed
Android applications. In Computer Security–ESORICS
2015: 20th European Symposium on Research in Com-
puter Security, Vienna, Austria, September 21-25, 2015,
Proceedings, Part II 20, pages 293–311. Springer, 2015.

[56] Hao Zhou, Shuohan Wu, Xiapu Luo, Ting Wang, Ya-
jin Zhou, Chao Zhang, and Haipeng Cai. NCScope:
hardware-assisted analyzer for native code in Android
apps. In Proceedings of the 31st ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis,
pages 629–641, 2022.

Appendix

Effectiveness of eBPF Traffic Redirection
To demonstrate the prevalence of such proxy evasion apps
and confirm the effectiveness of introducing eBPF for traffic
redirection, we conducted experiments on both Chinese and
Google Play apps. We evaluate the eBPF redirection effective-
ness from the following aspects: 1) How many apps do not
respect the system proxy? 2) How many HTTPS connections
are redirected to our proxy? We found that 1979/2765 (71.6%)
Chinese apps had at least one connection in either HTTP or
HTTPS protocols that did not respect system proxy (i.e., these
apps will not be fully analyzed by existing work [33,44] , and
1928/2765 (69.7%) had their HTTPS traffic not utilized the
system proxy. Our eBPF program redirected a total of 103952
HTTPS connections to our proxy. In Google Play apps, we no-
ticed that 3394 (67.1%) apps had at least one connection that
did not respect the system proxy in either HTTP or HTTPS
protocols, and 3387 apps had at least one HTTPS connection
redirected to our proxy (a total of 211838 HTTPS connec-
tions).

Certificate Type Chinese Google Play
TLS Conn % Insecure # TLS Conn % Insecure

Unverified Cert. Signature 64696 21.5% 75022 2.6%
Self-signed Cert. 65011 21.4% 67945 2.6%
Expired Cert. 62725 20.4% 65096 2.6%
Domain Mismatch 45736 18.8% 32509 3.7%

Table 5: The total TLS connections and the percentage of
insecure ones

16

App Category #DL Hijacked
Affected Party

Affected Functionality

Vulnerability

Responsible Party

com.divoom.Divoom Art&Design 500K+ Yes Facebook, Twitter OAuth Authentication Account takeover Tencent Bugly
com.guixue.m Education 1M+ Yes App SSO Authentication Account takeover Tencent Bugly
ch999.app.UI Shopping 1M+ Yes App SSO Authentication Account takeover Tencent Bugly
asia.share.superayiconsumer Tools 975K+ Yes App SSO Authentication Account takeover Baidu Location
com.paint.bynumber.
color.coloringgames Game 100M+ Yes AppLovin Advertisement Phishing attack Tencent Bugly

com.playit.videoplayer Leisure 100M+ Yes

Flat Ads,
Moloco,
Smaato Ads,
AppLovin

Advertisement Phishing attack App

asia.share.superayiconsumer Tools 975K+ Yes QQ Map,
China Mobile PII, GPS Information Leaks Baidu Location

cn.com.jschina.news News 1.5M+ Yes Jpush, Getui PII, GPS, Installed apps Information Leaks Tencent Bugly
com.newsweekly.livepi News 1.4M+ Yes Taobao PII Information Leaks Alibaba SDK

com.android.tutuerge Education 10M+ Yes Tencent Cloud Video Play
Remote Command
Execution Tencent Bugly

cn.yonghui.hyd Shopping 10M+ No App SSO Authentication Account takeover App
android.jianzhilieren Tools 5M+ No App SSO Authentication Account takeover App
cn.mopon.film.xflh Tools 290K+ No App SSO Authentication Account takeover App
com.belugaedu.amgigorae Education 1M+ No App SSO Authentication Phishing attack App

Table 6: Exploited Vulnerabilities Introduced by Insecure TLS Validation

Category Data Type
Chinese Apps Google Play Apps

Regular Encrypted
Insecurely
Encrypted Overall Regular Encrypted

Insecurely
Encrypted Overall

D
ev

ic
e

Device ID 94 73 13 145 25 8 3 32
Advertising ID 267 149 4 354 64 21 14 68
Bootloader 2 11 0 13 3 1 1 4
Build Fingerprint 276 104 9 356 26 6 1 30
CPU Model 204 135 0 323 16 6 1 22
Display ID 1259 211 15 1260 174 22 13 175
Device Name 364 217 84 516 43 21 11 57
Device Resolution 10 41 18 50 17 5 3 22
Device ABI 470 262 44 583 46 14 10 50
Device Model 1327 621 156 1332 206 35 23 207
Dummy0 Interface 17 2 1 19 1 0 0 1

N
et

w
or

k

Operator 116 132 35 233 28 14 11 35
Device WiFi IP 63 149 7 209 9 6 1 14
Device WiFi IPv6 2 0 2 0 0 0 0 0
Default Gateway IP 61 128 7 186 2 2 1 4
WiFi MAC 0 0 0 0 0 0 0 0

N
et

w
or

k
L

oc
at

io
n

Router ESSID 9 21 0 30 1 0 0 1
Router BSSID 9 21 0 30 0 0 0 0
neighbor Router ESSID 8 22 2 30 0 0 0 0
neighbor Router BSSID 8 20 0 28 0 0 0 0

G
PS

GPS (≤7 meter accuracy) 5 8 1 13 2 0 0 2
GPS (78 meter accuracy) 16 15 8 31 9 0 0 9
GPS (787 meter accuracy) 30 15 8 45 13 0 0 13

U
se

rA
ss

et
s

List of Apps 26 149 22 173 0 1 0 1
SMS 0 0 0 0 0 0 0 0
Phone Number 59 6 4 65 4 0 0 4
Contacts 0 0 0 0 1 0 0 1
Device Email 4 0 0 4 15 0 0 15
App Authentication Password 6 0 0 6 6 0 0 6

Table 7: On-device information transmission for Chinese and Google Play apps involves an insecure, improperly verified TLS
certificate, with or without custom encryption (applied on top of the TLS protocol). These statistics are listed in the Regular,
Encrypted, and Insecurely Encrypted columns. The overall column represents the number of apps that utilize either regular
HTTPS or custom encrypted channels. In the Encrypted columns, the security level is unknown. In the Insecurely Encrypted
columns, it means the app used a symmetric algorithm with a hard-coded or fixed key, or transmitted its key on a channel
encrypted by a hard-coded key or fixed key.

Before After

Figure 3: Example of launching a phishing attack, by manipu-
lating the received content from the server in the “Memoriza-
tion Whale" app (com.belugaedu.amgigorae).

Before After

Figure 4: Example of launching a phishing attack, by ma-
nipulating applovin’s ad content in the “Paint by Number:
Coloring Game" app.

71 /**
72 * Creates an OkHttpClient suitable for creating @link HttpsURLConnection instances on
73 * Android.
74 */
75 // Visible for android.net.Network.
76 public static OkUrlFactory createHttpsOkUrlFactory(Proxy proxy) {
77 // The HTTPS OkHttpClient is an HTTP OkHttpClient with extra configuration.
78 OkUrlFactory okUrlFactory = HttpHandler.createHttpOkUrlFactory(proxy);
79
80 // All HTTPS requests are allowed.
81 OkUrlFactories.setUrlFilter(okUrlFactory, null);
82
83 OkHttpClient okHttpClient = okUrlFactory.client();
84
85 // Only enable HTTP/1.1 (implies HTTP/1.0). Disable SPDY / HTTP/2.0.
86 okHttpClient.setProtocols(HTTP_1_1_ONLY);
87
88 okHttpClient.setConnectionSpecs(Collections.singletonList(TLS_CONNECTION_SPEC));
89
90 // Android support certificate pinning via NetworkSecurityConfig so there is no need to
91 // also expose OkHttp’s mechanism. The OkHttpClient underlying https HttpsURLConnections
92 // in Android should therefore always use the default certificate pinner, whose set of
93 // @code hostNamesToPin is empty.
94 okHttpClient.setCertificatePinner(CertificatePinner.DEFAULT);
95
96 // OkHttp does not automatically honor the system-wide HostnameVerifier set with
97 // HttpsURLConnection.setDefaultHostnameVerifier().
98 okUrlFactory.client().setHostnameVerifier(HttpsURLConnection.getDefaultHostnameVerifier());
99 // OkHttp does not automatically honor the system-wide SSLSocketFactory set with

100 // HttpsURLConnection.setDefaultSSLSocketFactory().
101 // See https://github.com/square/okhttp/issues/184 for details.
102 okHttpClient.setSslSocketFactory(HttpsURLConnection.getDefaultSSLSocketFactory());
103
104 return okUrlFactory;
105 }

Listing 8: Android’s modification to the Square OkHttp
implementation that introduced the hijacking issue -
com.android.okhttp.HttpsHandler class (the problematic lines
are highlighted in red)

Certificate Type Chinese Google Play
% App Conn % Lib Conn % App Conn % Lib Conn

Unverified Cert. Signature 23.0% 77.0% 85.3% 14.7%
Self-signed Cert. 23.2% 76.8% 82.9% 17.1%
Expired Cert. 23.7% 76.3% 83.1% 16.9%
Domain Mismatch 24.0% 76.0% 83.7% 16.3%

Table 8: The proportion of insecure TLS connections origi-
nating from apps and libraries

	Introduction
	Related Work
	High-level System Design
	Attribution of Validation Issues
	Technical Challenges, Solutions, Overview

	Implementation of Marvin
	Preparing the Analysis Environment
	Execution and Data Collection
	Analysis and Attribution

	Results
	Certificate Validation Issues
	Attribution Results
	Information Leaks

	Case Studies
	Prevalence, Root Cause, Mitigation, and Limitations
	Conclusion

